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Molecular dynamics simulations are reported for the solid-liquid coexistence properties of n-6
Lennard-Jones fluids, where n=12, 11, 10, 9, 8, and 7. The complete phase behavior for these
systems has been obtained by combining these data with vapor-liquid simulations. The influence of
n on the solid-liquid coexistence region is compared using relative density difference and miscibility
gap calculations. Analytical expressions for the coexistence pressure, liquid, and solid densities as
a function of temperature have been determined, which accurately reproduce the molecular
simulation data. The triple point temperature, pressure, and liquid and solid densities are estimated.
The triple point temperature and pressure scale with respect to 1 /n, resulting in simple linear
relationships that can be used to determine the pressure and temperature for the limiting
�-6 Lennard-Jones potential. The simulation data are used to obtain parameters for the Raveché,
Mountain, and Streett and Lindemann melting rules, which indicate that they are obeyed by the
n-6 Lennard Jones potentials. In contrast, it is demonstrated that the Hansen–Verlet freezing rule
is not valid for n-6 Lennard-Jones potentials. © 2009 American Institute of Physics.
�doi:10.1063/1.3253686�

I. INTRODUCTION

Intermolecular interactions involved in solid-liquid co-
existence are of considerable scientific interest.1 Theories of
solid-liquid coexistence are commonly based on the observa-
tion that the structure of dense fluids is dominated by steep
repulsive interaction between the atoms or molecules.2–5

Melting temperatures are strongly influenced by interatomic
repulsive forces. The 12-6 Lennard-Jones potential is ad-
equate for atomic fluids, whereas modeling the behavior of
molecules or monomers of polymer chains usually requires a
potential with a softer repulsive part.6

A simple soft core potential can be obtained by replacing
the “12” exponent in the 12-6 Lennard-Jones potential by a
smaller integer. It has been found that varying the value of
this exponent and, thereby the steepness of the main repul-
sive branch of the potential, significantly affects vapor-liquid
equilibria,6–9 the critical point,7 and transport properties.10–12

Although a number of molecular simulation studies6–9 of
vapor-liquid equilibria have been reported for such n-6
Lennard-Jones potentials, the effect of varying n for the
solid-liquid phase transition has not been widely investi-
gated. The absence of solid-liquid equilibrium data can be
partly attributed to the difficulty of particle insertion between
dense phases common to many molecular simulation tech-
niques. This difficulty has been recently eliminated by a mo-
lecular dynamics �MD� algorithm13 that combines aspects of
equilibrium and nonequilibrium simulation techniques.

In this work, we use the combined13 equilibrium molecu-
lar dynamics �EMD� and nonequilibrium molecular dynam-
ics �NEMD� approach to investigate solid-liquid coexistence
of n-6 Lennard-Jones fluids as a function of n. The data

provide an insight into the role of intermolecular repulsion
on the solid-liquid transition. We demonstrate how physical
properties and the melting rules vary with n. The data also
allow us to complete the phase diagrams of the n-6 Lennard-
Jones fluids and estimate the triple points.

II. SIMULATION DETAILS

The n-6 Lennard-Jones potential is

u�r� = �� n

n-6
��n

6
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r
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where � is the atomic diameter and � is the well depth. We
will consider potentials with values of n ranging from 7 to
12. The smaller the index n, the wider the attractive part and
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FIG. 1. Comparison of n-6 Lennard-Jones pair potentials where from top to
bottom n=12, 11, 10, 9, 8, and 7.
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weaker the repulsive force, as depicted in Fig. 1. It should be
noted that attributing n and “6” contributions to repulsion
and attraction, respectively, is only a convenient approxima-
tion. The continuous nature of the potential with respect to
interatomic separation �r� means that it is impossible to iso-
late either purely repulsive or purely attractive contributions.
As n approaches infinity, the leading coefficient of Eq. �1�
approaches � and the n-6 Lennard-Jones potential reaches
the limiting case of a “hard-sphere+attractive term”
potential.8

We have used the simulation algorithm proposed by Ge
et al.13 that combines the techniques of both EMD and
NEMD. We denote this algorithm as “GWTS” after the au-
thors. As discussed elsewhere,13,14 the GWTS algorithm uses
NEMD to determine the pressure at different strain rates for

a common temperature and density. At densities equal to or
greater than the freezing point, there is an abrupt change in
pressure between the zero strain-rate case and the first non-
zero strain rate, which allows us to accurately identify the
freezing density and pressure. Having identified the freezing
point, EMD calculations are performed to obtain the isother-
mal pressure-density behavior of the solid curve. The density
of the melting point is the point at which the constant pres-
sure tie line touches the solid curve. In contrast to other
methods,15–25 the GWTS algorithm is self-starting and it
does not require particle interchange between phases.

The initial configuration in all the simulations was a face
centered cubic lattice structure. The isothermal isochoric
NEMD simulations were performed by applying the standard
sllod equations26 of motion for planer Couette flow coupled
with Lees–Edwards13,26 periodic boundary conditions. If the
applied strain rate is switched off, the sllod algorithm be-
haves like a conventional equilibrium dynamics algorithm in
the canonical ensemble �NVT�. The NVT EMD simulations
were performed using conventional cubic periodic boundary
conditions.27 A Gaussian thermostat multiplier28 was used to
keep the kinetic temperature of the fluid constant. The equa-
tions of motion were integrated with a five-value Gear pre-
dictor corrector scheme.27,29 The normal convention was
used for the reduced density ���=��3�, temperature �T�

=kT /��, energy �E�=E /��, pressure �p�= p�3 /��, and time
���= �� /m�2�1/2��. All quantities quoted in this work are in
terms of these reduced quantities and the asterisk superscript
will be omitted in the rest of the paper.
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FIG. 2. Comparison of the solid-liquid coexistence �a� pressure, �b� liquid
densities, and �c� solid densities for the 12-6 Lennard-Jones potential calcu-
lated in this work ��� with data from the literature �� Ref. 15, * Ref. 16�.
The errors are approximately equal to the symbol size.

6 7 8 9 10 11 12 13

31

34

37

40

43

46

49

p*

n

a

6 7 8 9 10 11 12 13

1.1

1.2

1.3

1.4

1.5

����

n

b

FIG. 3. Comparison of the solid-liquid coexistence �a� pressure ��� and �b�
liquid ��� and solid �o� densities of n-6 Lennard-Jones potentials at T
=2.74.
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The results presented here are the ensemble averages for
five independent simulations corresponding to different MD
trajectories. The simulation trajectories were typically run for
2�105 time steps of �=0.001. The first 5�104 time steps of
each trajectory were used either to equilibrate zero-shearing
field EMD or to achieve nonequilibrium steady state after the
shearing field was switched on. The rest of the time steps in
each trajectory were used to accumulate the average values
of thermodynamic variables and standard deviations. A sys-
tem size of 2048 Lennard-Jones particles was used for all the
simulations with a cutoff distance of 2.5�. Conventional
long-range corrections were used to recover the properties of
the full Lennard-Jones fluid.

III. RESULTS AND DISCUSSION

A. Solid-liquid coexistence

To validate the GWTS simulation method13 we first cal-
culated solid-liquid equilibria for the 12-6 Lennard-Jones
system at various temperatures and compared the results
with data available in the literature �Fig. 2�.15,16 Figure 2
shows that our results for the pressure-temperature behavior
are in good agreement with previous studies. The only ex-
ception is that the pressure at T=2.74 is somewhat lower
than reported elsewhere.15 This discrepancy in pressure re-
flects the fact that our results for both freezing and melting

points occur at different densities �Figs. 2�b� and 2�c��. Our
densities are lower than reported by Agrawal and Kofke.15

Agrawal and Kofke’s pressure data are 12% higher then the
data of Hansen and Verlet.16 The cause of this discrepancy is
commonly attributed to uncertainties in the starting point re-
quired by the Gibbs–Duhem integration �GDI� method.24,25

The inverse 12th-power soft-sphere initial condition needed
to start the GDI procedure was p=16.89T5/4, which is higher
than reported by Hoover et al.,30 Hansen,16 and Cape and
Woodcock.31 Any error in the initial condition for the GDI
method will be systematically32 applied to all other state
points. The GWTS algorithm13 used in this work is free from
this uncertainty.

The solid-liquid coexistence pressure as a function of n
is shown in Fig. 3�a� for T=2.74. It indicates that there is an
approximately linear inverse relationship between pressure
and n. Decreasing the value of n causes an increase in the
coexistence pressure. Decreasing the value of n means the
distance at which atoms start to experience significant repul-
sive forces is decreased. Therefore, higher pressures are re-
quired to overcome this increased repulsion to form a solid
phase. The coexisting solid and liquid densities for different
n values are illustrated in Fig. 3�b�. In common with the
coexistence pressure, decreasing the value of n causes both
the liquid and solid phase coexisting densities to increase.

TABLE I. Molecular simulation data for the solid-liquid coexistence properties of n-6 Lennard-Jones fluids.
The statistical uncertainties are given in parenthesis.

T� n p� �liq
� Eliq

� �sol
� Esol

� �h�

2.74 7 46.7�3� 1.339 �4.72�7� 1.391 �5.83�7� �2.41
8 42.6�3� 1.267 �4.01�7� 1.321 �5.14�7� �2.48
9 39.9�3� 1.218 �3.66�6� 1.278 �4.73�7� �2.61
10 37.2�3� 1.176 �3.53�6� 1.242 �4.60�7� �2.73
11 35.5�3� 1.147 �3.45�6� 1.212 �4.55�7� �2.76
12 33.2�3� 1.116 �3.48�6� 1.181 �4.60�6� �2.75

1.5 7 12.8�1� 1.111 �8.44�3� 1.170 �9.33�3� �1.47
8 12.7�1� 1.074 �7.35�4� 1.138 �8.19�3� �1.51
9 11.9�1� 1.039 �6.64�3� 1.102 �7.64�3� �1.65
10 11.7�1� 1.021 �6.19�3� 1.090 �7.09�3� �1.63
11 11.7�1� 1.009 �5.87�3� 1.078 �6.79�3� �1.66
12 11.2�1� 0.993 �5.63�3� 1.069 �6.57�3� �1.74

1.0 7 3.22�9� 0.989 �9.13�2� 1.052 �10.01�2� �1.06
8 3.77�9� 0.967 �7.99�2� 1.035 �8.86�2� �1.12
9 3.89�9� 0.948 �7.26�2� 1.024 �8.15�2� �1.19
10 3.9�1� 0.935 �6.77�2� 1.014 �7.67�2� �1.23
11 4.0�1� 0.929 �6.41�2� 1.008 �7.33�2� �1.25
12 4.05�1� 0.923 �6.14�2� 1.008 �7.05�2� �1.28

0.90 7 1.63�7� 0.965 �9.18�2� 1.031 �10.08�2� �1.01
8 2.17�7� 0.939 �8.04�2� 1.012 �8.93�2� �1.05
9 2.40�8� 0.924 �7.31�2� 1.003 �8.22�2� �1.11
10 2.63�9� 0.917 �6.83�2� 1 �7.76�2� �1.16
11 2.80�9� 0.913 �6.48�2� 1 �7.43�2� �1.21
12 2.7�1� 0.908 �6.21�1� 0.999 �7.18�2� �1.24

0.80 7 0.39�6� 0.937 �9.22�1� 1.012 �10.15�2� �0.96
8 0.82�6� 0.913 �8.07�1� 0.992 �8.99�20 �0.99
9 1.10�7� 0.9 �7.34�1� 0.990 �8.31�2� �1.07
10 1.41�7� 0.898 �6.88�1� 0.984 �7.83�1� �1.08
11 1.43�8� 0.892 �6.53�1� 0.983 �7.49�2� �1.10
12 1.65�8� 0.891 �6.25�1� 0.983 �7.23�1� �1.15
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However, the relationship is not linear and the difference
between the liquid and solid densities decreases slightly with
decreasing n. These data and data for other temperatures are
summarized in Table I. The data for the other temperatures
show the same trend as T=2.74. The energy and change in
enthalpy are also given in Table I for the benefit of complete-
ness.

The temperature-density behavior of the freezing and
melting lines of n-6 Lennard-Jones potentials is illustrated in
Fig. 4. Vapor-liquid coexistence data7,9 and triple point data
are also included to complete the phase diagram of the pure
n-6 Lennard-Jones fluids. Figure 4�a� represents the com-
plete phase diagrams for n=12, 10, and 8 and Fig. 4�b� rep-
resents the complete phase diagrams for n=11, 9, and 7. It is
well known7,9 that a decrease in the value of n increases the
temperature of the critical point, increasing the temperature
range for two-phase vapor-liquid coexistence. The main ef-
fect of decreasing n on solid-liquid coexistence is to shift the
melting and freezing curves to higher densities.

The variation in pressure for different n values with re-
spect to temperature is examined in Figs. 5�a� and 5�b�. At
high temperatures, the pressure decreases with increasing n.
However, this trend is reversed at medium to low tempera-
tures, at which pressure increases with increasing n. The
most notable change occurs at very low temperatures, where
an increase in the value of n results in a sharp increase in
pressure.

The solid-liquid coexistence region of the phase diagram
is sensitive to the nature of the interaction potential.33 The
relative density difference �rdd� and the fractional density
change �fdc� at freezing �commonly known as the miscibility
gap� are two measures that can be used to quantify the effect
of the interaction potential on solid-liquid coexistence. The
rdd is defined as34 	n=2��sol−�liq� / ��sol+�liq�, where �sol

and �liq are the solid and liquid coexistence densities of the
system. The lower bound of the rdd is 0.037, which is the
approximate value for 12-inverse-power soft sphere
systems.35 The upper bound is 0.098, which is the rdd for
hard spheres.36 The n dependency of the rdd is shown in Fig.
6�a�. We have also calculated the rdd of the 12-6 Lennard-
Jones system from Agrawal and Kofke’s15 data, obtaining a
value of 0.093. The miscibility gap or fdc is defined as15,33

��sol−�liq� /�liq and is shown in Fig. 6�b�. It is evident that
both fdc and rdd decrease with decreasing n values. This
means that decreasing n results in a smaller two-phase re-
gion. Both metrics also decrease significantly with the in-
creasing temperature. Therefore, the size of the two-phase
region is narrower at high temperatures compared with low
temperatures.

B. Temperature dependence of coexistence pressure
and densities

At high temperatures repulsive force dominates and it is
expected that the 12-6 Lennard-Jones potential must ap-

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.6

1.1

1.7

2.3

2.8

T*

��

a

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.6

1.1

1.7

2.3

2.8

T*

�*

b

FIG. 4. Complete density-temperature phase diagrams of n-6 Lennard-Jones
potentials. Shown are �a� n=12 ��, guided by a dashed line�, 10 ��, guided
by a dotted line�, 8 �O, guided by a solid line� and �b� n=7 ��, guided by
a solid line�, 9 ��, guided by a dotted line�, 11 ��, guided by a dashed line�.
The vapor-liquid coexistence data are from Refs. 7 and 9. Freezing and
melting lines and triple points are from this work.
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FIG. 5. The solid-liquid coexistence pressure of n-6 Lennard-Jones poten-
tials calculated in this work as a function of reciprocal temperature on a log
scale. �a� n=12 ��, guided by a solid line�, 10 ��, guided by a dotted line�,
and 8 ��, guided by a dashed line�. �b� n=11 ��, guided by a solid line�, 9
��, guided by a dotted line�, and 7 �*, guided by a dashed line�.
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proach the scaling behavior of the inverse 12th-power
potential.35 Using the special scaling properties35,37,38 of the
inverse nth-power potential, Agrawal and Kofke15 showed
that

p12-6 = 
−5/4 exp�− D
1/2��16.89 + k1
 + k2
2� , �2�

where 
=1 /kT, 16.89 is the limiting soft sphere value of
p
5/4, D=0.4759 was determined from soft-sphere simula-
tion data, and k1 and k2 are fitting parameters. van der Hoef39

used Eq. �2� to reproduce the solid-liquid coexistence data
with very good accuracy. For soft-core systems, the equilib-
rium melting temperature and pressure should satisfy Cn

= p
�, where �= �3+n� /n. Morris et al.22 reported values of
C12=16.89�0.03 and C9=22.90�0.03 for soft sphere po-
tentials. We propose that Agrawal and Kofke’s15 original
semiempirical fit can be generalized for any n-6 Lennard-
Jones potential,

pn-6 = 
−�3+n�/n exp�− 0.4759
1/2��k0C12 + k1
 + k2
2� .

�3�

The values of k0, k1, and k3 obtained from fitting our simu-
lation data to Eq. �3� are summarized in Table II. Equation
�3� accurately reproduces the pressure-temperature behavior
�0.8T2.74� as evident from a squared correlation coef-
ficient �R2� value of 0.99 for all n-6 Lennard-Jones poten-
tials.

van der Hoef39 fitted the freezing and melting densities
for a 12-6 Lennard-Jones via the following relationships in-
volving 
:

	 �liq = 
−1/4�l0 + l1
 + l2
2 + l3
3 + l4
4 + l5
5�
�solid = 
−1/4�s0 + s1
 + s2
2 + s3
3 + s4
4 + s5
5� 
 .

�4�

We found that simulation data for all of the n-6 Lennard-
Jones potentials could be accurately �R2=0.99� fitted to these
equations. The values of the required parameters are summa-
rized in Table III.

C. Estimation of the triple point

We have obtained estimates of the triple point by per-
forming solid-liquid equilibria simulations at low densities
and, where necessary, slightly extrapolating vapor-liquid
data. The triple point liquid density and temperature were
identified by the intersection of the solid-liquid and vapor-
liquid coexistence data. The solid densities were estimated
by extrapolating data for the melting densities to the triple
point temperature. We have determined the triple point pres-
sures from extrapolating our solid-liquid coexistence data for
T�0.8. The use of extrapolation means that the triple point
values should only be considered as good approximations
rather than accurate values.

Triple point data in the literature are confined exclu-
sively to the 12-6 Lennard-Jones potential. The estimated
triple point for the 12-6 Lennard-Jones potential is compared
with literature sources in Table IV. Our triple point tempera-
ture differs by less than 4% from the values reported by
either Hansen and Verlet16 or Agrawal and Kofke.15 Indeed,
it is well within the uncertainty reported by Hansen and
Verlet.16 Our triple point densities are somewhat higher than
reported earlier.15,16 The triple point pressure is higher than
reported elsewhere,15 reflecting differences in both the esti-
mated triple point temperature and densities. We note that
estimating the pressure is prone to considerable
uncertainties40 with early estimates yielding negative
values.18 The differences between our calculations and that
of Agrawal and Kofke can be partly attributed to the effect of
system size. Agrawal and Kofke observed a 1.6% decrease in
temperature by increasing the system size from 236 to 932
atoms. In contrast, 2048 atoms were used for our simulations
in the vicinity of the triple point.

The triple points for the remaining n-6 Lennard-Jones
potentials are summarized in Table V. We were not able to
reliably determine the pressures for n=7 and 8 because of
the precipitous nature of the pressure change close to the
triple point. For other n values a scaling relationship for both
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FIG. 6. �a� rdd and �b� fdc of n-6 Lennard-Jones potentials at T=1.0 ���
and T=2.74 ���.

TABLE II. Parameters for the scaling behavior �Eq. �3�� of pressure as a
function of inverse temperature for n-6 Lennard-Jones potentials. Errors are
given in parenthesis.

n k0 k1 k2

12 1.36�1� �20.5�6� 3.8�4�
11 1.49�1� �23.6�9� 4.7�5�
10 1.61�2� �27�1� 6.3�8�
9 1.82�4� �34�2� 9�1�
8 1.93�2� �35�1� 8�1�
7 2.28�3� �48�2� 15�1�
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triple point temperature �Fig. 7�a�� and pressure �Fig. 7�b��
with respect to 1 /n can be observed. In contrast, scaling
behavior is not apparent for the densities �Fig. 7�c��. These
data can be adequately fitted by

	 Ttr�n� = 2.10/n + 0.482

ptr�n� = 0.1104/n − 0.0073

 . �5�

From Eq. �5�, the triple point temperature for the �-6
Lennard-Jones potential is 0.482. The relatively small value
of the intercept for the pressure equation suggests that the
triple point pressure for the �-6 Lennard-Jones potential is
zero. This compares with a critical temperature of either
0.572 or 0.607 reported by Camp and Patey41 and Charpen-
tier and Jakse,8 respectively, and a critical pressure41 of
0.079. These data are likely to be of value in calibrating hard
sphere+attractive term equations of state.42

D. Melting and freezing rules

It has been observed that liquid freezing and solid melt-
ing follow certain empirical rules. Most freezing rules in-
volve the liquid structure as quantified by the radial distribu-
tion function, whereas melting rules typically involve either
geometrical attributes or free energy calculations. In view of
this, it is of interest to examine the radial distribution func-
tion for the n-6 Lennard-Jones fluids. Figure 8 compares the
radial distribution functions for the 12-6 Lennard-Jones and
7-6 Lennard-Jones potentials at a common state point. It is
apparent that decreasing the value of n results in higher
maxima and lower minima, resulting in narrower peaks. Fig-
ure 9 compares the radial distribution maxima �Fig. 9�a�� and
minima �Fig. 9�b�� for different n-6 Lennard-Jones fluids at
the freezing point. It is evident that the choice of n has a
considerable influence of the structure of the fluid at the
freezing transition.

The Lindemann,43 Simon–Glatzel,44,45 and Ross46 rules
are widely used examples of melting rules. The most com-
monly used freezing rules are the Hansen–Verlet,16 Raveché–
Mountain–Streett �RMS�,17 and Giaquinta–Giunta47 rules.
Agrawal and Kofke15 concluded that many melting and
freezing rules were both temperature and density dependent.
In contrast, the freezing rule of RMS is almost invariant for
the entire solid-liquid coexistence curve from the triple point
to the high temperature soft-sphere limit.

RMS observed17 that experimental radial distribution
function data generally obeyed the following relationship:

IRMS = g�rmin�/g�rmax� � 0.2, �6�

where rmin is the position of the first nonzero minimum of the
pair distribution and rmax is the position of its first maximum.
We calculated IRMS from our simulation data for the n-6
Lennard-Jones potentials at a common temperature of T
=1.0 �Table VI�. It is apparent from Table VI that IRMS is
largely invariant for all values of n. The difference in the
value of IRMS �0.14� for the 12-6 Lennard-Jones potential
compared with the experimentally observed value �0.2�
partly reflects the limitation of the potential to fully represent
the properties of real fluids.

The Hansen–Verlet16 rule states that on freezing the
structure factor has a maximum value of S�k0�=2.85. We
have obtained the structure factor4 via a Fourier transforma-
tion of the pair-correlation function. Hansen16 found that
S�k� changes with increasing temperature for 864 particles.
Agrawal and Kofke15 also observed a 10% variation in this
value with respect to temperature change. They also found
that the Hansen–Verlet freezing rule also varied significantly
with system size. For a system of 2048 12-6 Lennard-Jones
atoms at T=2.74 we calculated the maximum structure factor
to be 4.2. Values for other n-6 Lennard-Jones potentials are
summarized in Table VI. It is evident from the data in Table

TABLE III. Parameters for the polynomial fit �Eq. �4�� for the coexisting liquid and solid densities for n-6 Lennard-Jones potential.

n l0 l1 l2 l3 l4 l5 s0 s1 s2 s3 s4 s5

12 1.439 85 1.319 19 1.586 85 1.827 55 1.687 77 1.860 46 0.636 19 4.494 82 �12.9164 15.895 34 �9.073 14 1.971 57
11 �1.3116 �0.190 95 �1.682 11 �2.666 71 �1.5078 �1.892 77 0.882 57 3.1642 �9.784 99 12.137 58 �6.849 99 1.459 31
10 1.484 22 �1.498 35 1.986 72 3.477 35 1.078 35 1.414 98 1.973 16 �3.807 65 7.138 75 �7.304 66 3.798 66 �0.783 07
9 �1.016 81 2.526 47 �1.496 15 �2.250 97 �0.293 79 �0.393 37 1.849 97 �2.434 89 2.9722 �1.779 39 0.414 64 0
8 0.395 61 �1.579 08 0.680 41 0.560 61 0 0 1.744 61 �1.587 36 1.371 56 �0.603 0.108 72 0
7 �0.068 12 0.352 03 �0.140 72 0 0 0 1.874 03 �1.720 06 1.1946 �0.296 28 0 0

TABLE IV. Comparison of triple point properties for the 12-6 Lennard-Jones fluid obtained from molecular
simulation studies. Errors are given in parenthesis.

Source System size Ttr
� ptr

� �liq,tr
� �sol,tr

�

Ladd and Woodcocka 1500 0.67�1� �0.47�3� 0.818�4� 0.963�6�
Hansen and Verletb 864 0.68�2� ¯ 0.85�1� ¯

Agrawal and Kofkec 236 0.698 0.0013 0.854 0.963
Agrawal and Kofkec 932 0.687�4� 0.0011 0.850 0.960
This work 2048 0.661 0.0018 0.864 0.978

aReference 18.
bReference 16.
cReference 15.
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VI that the value of S�k0� depends on the value of n. This
means that the Hansen–Verlet freezing rule is not valid for
n-6 Lennard-Jones potentials.

The most commonly used model for predicting the melt-
ing line is the Lindemann rule.43 The Lindemann ratio �L� is defined as the root-mean-square displacement of particles in

a crystalline solid about their equilibrium lattice positions
divided by the nearest neighbor distance �a�. In a MD simu-
lation, L can be evaluated48 via

L =
�ri

2�t − ri�t
2�i

a
, �7�

where ¯ �t and ¯ �i denote ensemble averages over time
and particles. The Lindemann rule states that a solid melts if
the root-mean-square displacement of particles around their
ideal position is approximately 10% of their nearest neighbor
distance, i.e., L�0.1. Many authors15,16,48 have questioned

TABLE V. Estimated triple point properties for n-6 Lennard-Jones poten-
tials.

n Ttr
� ptr

� �liq,tr
� �sol,tr

�

� 0.482 0 ¯ ¯

12 0.661 0.0018 0.864 0.978
11 0.673 0.0028 0.867 0.982
10 0.689 0.0038 0.867 0.992
9 0.718 0.0049 0.883 1.000
8 0.748 ¯ 0.899 1.028
7 0.782 ¯ 0.932 1.050
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tr
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0.080 0.096 0.112 0.128 0.144
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1.015
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��*tr

1/n

c

FIG. 7. Triple point properties of n-6 Lennard-Jones potentials as a function
of 1 /n. Shown are �a� triple point temperatures ���, �b� pressures ���, and
�c� liquid ��� and solid ��� phase densities. The lines represent the least-
squares fit of the data given by Eq. �5�.
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FIG. 8. Comparison of the liquid phase radial distribution functions for a
12-6 Lennard-Jones potential �solid line� and a 7-6 Lennard-Jones potential
�dashed line� at T=2.74 and �=1.0.
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FIG. 9. Comparison of the �a� first maxima and the �b� first minima at the
freezing point for n-6 Lennard-Jones fluids, where n=7 �solid line�, 9
�dashed line�, and 12 �dotted line�. T=2.74 and �=1.339, 1.218, and 1.116
for n=7, 9, and 12, respectively.
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the quantitative prediction of Lindemann’s rule, although it is
generally accepted as being at least qualitatively correct. We
have calculated the Lindemann ratio for all n-6 Lennard-
Jones potentials �Table VI� and as expected, L�0.1. None-
theless, L is close to being constant irrespective of the value
of n, which indicates that it is a valid indicator of the melting
transition.

IV. CONCLUSIONS

The GWTS algorithm13 is effective in determining solid-
liquid equilibrium without relying on either particle insertion
or starting values. We have determined the solid-liquid coex-
istence properties of fluids from the triple point to high pres-
sures, interacting via n-6 Lennard-Jones potentials, where
n=12, 11, 10, 9, 8, and 7. By combining these data with
early vapor-liquid simulation, the complete phase behavior
for these systems has been obtained. Analytical expressions
for the coexistence pressure liquid and solid densities as a
function of temperature have been determined, which accu-
rately reproduce the molecular simulation data. The triple
point temperature, pressure, and liquid and solid densities
have been estimated. The triple point temperature and pres-
sure scale with respect to 1 /n, resulting in simple linear re-
lationships that can be used to determine the pressure and
temperature for the limiting �-6 Lennard-Jones potential.
Data are obtained for the RMS and Lindemann melting rules,
which indicate that they are obeyed by the n-6 Lennard-
Jones potentials. In contrast, it is demonstrated that the
Hansen–Verlet freezing rule is not valid for n-6 Lennard-
Jones potentials.
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